Computer Science > Information Theory
[Submitted on 21 Aug 2024 (v1), last revised 10 Oct 2024 (this version, v5)]
Title:Optical ISAC: Fundamental Performance Limits and Transceiver Design
View PDFAbstract:This paper characterizes the optimal capacity-distortion (C-D) tradeoff in an optical point-to-point system with single-input single-output (SISO) for communication and single-input multiple-output (SIMO) for sensing within an integrated sensing and communication (ISAC) framework. We consider the optimal rate-distortion (R-D) region and explore several inner (IB) and outer bounds (OB). We introduce practical, asymptotically optimal maximum a posteriori (MAP) and maximum likelihood estimators (MLE) for target distance, addressing nonlinear measurement-to-state relationships and non-conjugate priors. As the number of sensing antennas increases, these estimators converge to the Bayesian Cramér-Rao bound (BCRB). We also establish that the achievable rate-Cramér-Rao bound (R-CRB) serves as an OB for the optimal C-D region, valid for both unbiased estimators and asymptotically large numbers of receive antennas. To clarify that the input distribution determines the tradeoff across the Pareto boundary of the C-D region, we propose two algorithms: i) an iterative Blahut-Arimoto algorithm (BAA)-type method, and ii) a memory-efficient closed-form (CF) approach. The CF approach includes a CF optimal distribution for high optical signal-to-noise ratio (O-SNR) conditions. Additionally, we adapt and refine the deterministic-random tradeoff (DRT) to this optical ISAC context.
Submission history
From: Alireza Ghazavi Khorasgani [view email][v1] Wed, 21 Aug 2024 17:25:40 UTC (2,364 KB)
[v2] Thu, 22 Aug 2024 00:56:20 UTC (2,365 KB)
[v3] Fri, 23 Aug 2024 17:14:36 UTC (2,365 KB)
[v4] Fri, 27 Sep 2024 15:10:47 UTC (1,386 KB)
[v5] Thu, 10 Oct 2024 09:58:36 UTC (1,013 KB)
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.