Computer Science > Machine Learning
[Submitted on 20 Aug 2024 (v1), last revised 12 Sep 2024 (this version, v2)]
Title:GACL: Graph Attention Collaborative Learning for Temporal QoS Prediction
View PDF HTML (experimental)Abstract:Accurate prediction of temporal QoS is crucial for maintaining service reliability and enhancing user satisfaction in dynamic service-oriented environments. However, current methods often neglect high-order latent collaborative relationships and fail to dynamically adjust feature learning for specific user-service invocations, which are critical for precise feature extraction within each time slice. Moreover, the prevalent use of RNNs for modeling temporal feature evolution patterns is constrained by their inherent difficulty in managing long-range dependencies, thereby limiting the detection of long-term QoS trends across multiple time slices. These shortcomings dramatically degrade the performance of temporal QoS prediction. To address the two issues, we propose a novel Graph Attention Collaborative Learning (GACL) framework for temporal QoS prediction. Building on a dynamic user-service invocation graph to comprehensively model historical interactions, it designs a target-prompt graph attention network to extract deep latent features of users and services at each time slice, considering implicit target-neighboring collaborative relationships and historical QoS values. Additionally, a multi-layer Transformer encoder is introduced to uncover temporal feature evolution patterns, enhancing temporal QoS prediction. Extensive experiments on the WS-DREAM dataset demonstrate that GACL significantly outperforms state-of-the-art methods for temporal QoS prediction across multiple evaluation metrics, achieving the improvements of up to 38.80%.
Submission history
From: Shengxiang Hu [view email][v1] Tue, 20 Aug 2024 05:38:47 UTC (1,836 KB)
[v2] Thu, 12 Sep 2024 05:52:05 UTC (2,501 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.