Computer Science > Information Theory
[Submitted on 20 Aug 2024 (v1), last revised 5 Mar 2025 (this version, v2)]
Title:Generative Diffusion Models for High Dimensional Channel Estimation
View PDF HTML (experimental)Abstract:Along with the prosperity of generative artificial intelligence (AI), its potential for solving conventional challenges in wireless communications has also surfaced. Inspired by this trend, we investigate the application of the advanced diffusion models (DMs), a representative class of generative AI models, to high dimensional wireless channel estimation. By capturing the structure of multiple-input multiple-output (MIMO) wireless channels via a deep generative prior encoded by DMs, we develop a novel posterior inference method for channel reconstruction. We further adapt the proposed method to recover channel information from low-resolution quantized measurements. Additionally, to enhance the over-the-air viability, we integrate the DM with the unsupervised Stein's unbiased risk estimator to enable learning from noisy observations and circumvent the requirements for ground truth channel data that is hardly available in practice. Results reveal that the proposed estimator achieves high-fidelity channel recovery while reducing estimation latency by a factor of 10 compared to state-of-the-art schemes, facilitating real-time implementation. Moreover, our method outperforms existing estimators while reducing the pilot overhead by half, showcasing its scalability to ultra-massive antenna arrays.
Submission history
From: Xingyu Zhou [view email][v1] Tue, 20 Aug 2024 02:47:24 UTC (801 KB)
[v2] Wed, 5 Mar 2025 12:18:57 UTC (2,918 KB)
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.