Economics > General Economics
[Submitted on 16 Aug 2024]
Title:Artificial Intelligence and Strategic Decision-Making: Evidence from Entrepreneurs and Investors
View PDF HTML (experimental)Abstract:This paper explores how artificial intelligence (AI) may impact the strategic decision-making (SDM) process in firms. We illustrate how AI could augment existing SDM tools and provide empirical evidence from a leading accelerator program and a startup competition that current Large Language Models (LLMs) can generate and evaluate strategies at a level comparable to entrepreneurs and investors. We then examine implications for key cognitive processes underlying SDM -- search, representation, and aggregation. Our analysis suggests AI has the potential to enhance the speed, quality, and scale of strategic analysis, while also enabling new approaches like virtual strategy simulations. However, the ultimate impact on firm performance will depend on competitive dynamics as AI capabilities progress. We propose a framework connecting AI use in SDM to firm outcomes and discuss how AI may reshape sources of competitive advantage. We conclude by considering how AI could both support and challenge core tenets of the theory-based view of strategy. Overall, our work maps out an emerging research frontier at the intersection of AI and strategy.
Current browse context:
econ.GN
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.