Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 16 Aug 2024]
Title:Deterministic Self-Stabilising Leader Election for Programmable Matter with Constant Memory
View PDF HTML (experimental)Abstract:The problem of electing a unique leader is central to all distributed systems, including programmable matter systems where particles have constant size memory. In this paper, we present a silent self-stabilising, deterministic, stationary, election algorithm for particles having constant memory, assuming that the system is simply connected. Our algorithm is elegant and simple, and requires constant memory per particle. We prove that our algorithm always stabilises to a configuration with a unique leader, under a daemon satisfying some fairness guarantees (Gouda fairness [Gouda 2001]). We use the special geometric properties of programmable matter in 2D triangular grids to obtain the first self-stabilising algorithm for such systems. This result is surprising since it is known that silent self-stabilising algorithms for election in general distributed networks require $\Omega(\log{n})$ bits of memory per node, even for ring topologies [Dolev et al. 1999].
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.