Computer Science > Computer Vision and Pattern Recognition
[Submitted on 16 Aug 2024 (v1), last revised 22 Aug 2024 (this version, v2)]
Title:TsCA: On the Semantic Consistency Alignment via Conditional Transport for Compositional Zero-Shot Learning
View PDF HTML (experimental)Abstract:Compositional Zero-Shot Learning (CZSL) aims to recognize novel \textit{state-object} compositions by leveraging the shared knowledge of their primitive components. Despite considerable progress, effectively calibrating the bias between semantically similar multimodal representations, as well as generalizing pre-trained knowledge to novel compositional contexts, remains an enduring challenge. In this paper, our interest is to revisit the conditional transport (CT) theory and its homology to the visual-semantics interaction in CZSL and further, propose a novel Trisets Consistency Alignment framework (dubbed TsCA) that well-addresses these issues. Concretely, we utilize three distinct yet semantically homologous sets, i.e., patches, primitives, and compositions, to construct pairwise CT costs to minimize their semantic discrepancies. To further ensure the consistency transfer within these sets, we implement a cycle-consistency constraint that refines the learning by guaranteeing the feature consistency of the self-mapping during transport flow, regardless of modality. Moreover, we extend the CT plans to an open-world setting, which enables the model to effectively filter out unfeasible pairs, thereby speeding up the inference as well as increasing the accuracy. Extensive experiments are conducted to verify the effectiveness of the proposed method.
Submission history
From: Jingcai Guo [view email][v1] Fri, 16 Aug 2024 12:30:29 UTC (6,353 KB)
[v2] Thu, 22 Aug 2024 08:52:56 UTC (7,647 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.