Statistics > Machine Learning
[Submitted on 16 Aug 2024 (v1), last revised 28 Nov 2024 (this version, v4)]
Title:Linear combinations of Gaussian latents in generative models: interpolation and beyond
View PDF HTML (experimental)Abstract:Sampling from generative models has become a crucial tool for applications like data synthesis and augmentation. Diffusion, Flow Matching and Continuous Normalizing Flows have shown effectiveness across various modalities, and rely on Gaussian latent variables for generation. For search-based or creative applications that require additional control over the generation process, it has become common to manipulate the latent variable directly. However, existing approaches for performing such manipulations (e.g. interpolation or forming low-dimensional representations) only work well in special cases or are network or data-modality specific. We propose Combination of Gaussian variables (COG) as a general purpose method to form linear combinations of latent variables while adhering to the assumptions of the generative model. COG is easy to implement yet outperforms recent sophisticated methods for interpolation. As COG naturally addresses the broader task of forming linear combinations, new capabilities are afforded, including the construction of subspaces of the latent space, dramatically simplifying the creation of expressive low-dimensional spaces of high-dimensional objects.
Submission history
From: Erik Bodin [view email][v1] Fri, 16 Aug 2024 06:43:58 UTC (40,832 KB)
[v2] Fri, 4 Oct 2024 15:32:38 UTC (46,233 KB)
[v3] Wed, 9 Oct 2024 18:39:43 UTC (45,735 KB)
[v4] Thu, 28 Nov 2024 10:13:24 UTC (44,567 KB)
Current browse context:
stat.ML
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.