Computer Science > Databases
[Submitted on 10 Aug 2024]
Title:Simpler is More: Efficient Top-K Nearest Neighbors Search on Large Road Networks
View PDF HTML (experimental)Abstract:Top-k Nearest Neighbors (kNN) problem on road network has numerous applications on location-based services. As direct search using the Dijkstra's algorithm results in a large search space, a plethora of complex-index-based approaches have been proposed to speedup the query processing. However, even with the current state-of-the-art approach, long query processing delays persist, along with significant space overhead and prohibitively long indexing time. In this paper, we depart from the complex index designs prevalent in existing literature and propose a simple index named KNN-Index. With KNN-Index, we can answer a kNN query optimally and progressively with small and size-bounded index. To improve the index construction performance, we propose a bidirectional construction algorithm which can effectively share the common computation during the construction. Theoretical analysis and experimental results on real road networks demonstrate the superiority of KNN-Index over the state-of-the-art approach in query processing performance, index size, and index construction efficiency.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.