Computer Science > Computation and Language
[Submitted on 6 Aug 2024]
Title:Enhancing Complex Causality Extraction via Improved Subtask Interaction and Knowledge Fusion
View PDF HTML (experimental)Abstract:Event Causality Extraction (ECE) aims at extracting causal event pairs from texts. Despite ChatGPT's recent success, fine-tuning small models remains the best approach for the ECE task. However, existing fine-tuning based ECE methods cannot address all three key challenges in ECE simultaneously: 1) Complex Causality Extraction, where multiple causal-effect pairs occur within a single sentence; 2) Subtask~ Interaction, which involves modeling the mutual dependence between the two subtasks of ECE, i.e., extracting events and identifying the causal relationship between extracted events; and 3) Knowledge Fusion, which requires effectively fusing the knowledge in two modalities, i.e., the expressive pretrained language models and the structured knowledge graphs. In this paper, we propose a unified ECE framework (UniCE to address all three issues in ECE simultaneously. Specifically, we design a subtask interaction mechanism to enable mutual interaction between the two ECE subtasks. Besides, we design a knowledge fusion mechanism to fuse knowledge in the two modalities. Furthermore, we employ separate decoders for each subtask to facilitate complex causality extraction. Experiments on three benchmark datasets demonstrate that our method achieves state-of-the-art performance and outperforms ChatGPT with a margin of at least 30% F1-score. More importantly, our model can also be used to effectively improve the ECE performance of ChatGPT via in-context learning.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.