Computer Science > Computer Vision and Pattern Recognition
[Submitted on 18 Jul 2024]
Title:Case-based reasoning approach for diagnostic screening of children with developmental delays
View PDFAbstract:According to the World Health Organization, the population of children with developmental delays constitutes approximately 6% to 9% of the total population. Based on the number of newborns in Huaibei, Anhui Province, China, in 2023 (94,420), it is estimated that there are about 7,500 cases (suspected cases of developmental delays) of suspicious cases annually. Early identification and appropriate early intervention for these children can significantly reduce the wastage of medical resources and societal costs. International research indicates that the optimal period for intervention in children with developmental delays is before the age of six, with the golden treatment period being before three and a half years of age. Studies have shown that children with developmental delays who receive early intervention exhibit significant improvement in symptoms; some may even fully recover. This research adopts a hybrid model combining a CNN-Transformer model with Case-Based Reasoning (CBR) to enhance the screening efficiency for children with developmental delays. The CNN-Transformer model is an excellent model for image feature extraction and recognition, effectively identifying features in bone age images to determine bone age. CBR is a technique for solving problems based on similar cases; it solves current problems based on past experiences, similar to how humans solve problems through learning from experience. Given CBR's memory capability to judge and compare new cases based on previously stored old cases, it is suitable for application in support systems with latent and variable characteristics. Therefore, this study utilizes the CNN-Transformer-CBR to establish a screening system for children with developmental delays, aiming to improve screening efficiency.
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.