Computer Science > Computer Vision and Pattern Recognition
[Submitted on 4 Aug 2024 (v1), last revised 28 Oct 2024 (this version, v3)]
Title:Mini-Monkey: Alleviating the Semantic Sawtooth Effect for Lightweight MLLMs via Complementary Image Pyramid
View PDF HTML (experimental)Abstract:Recently, scaling images to high resolution has received much attention in multimodal large language models (MLLMs). Most existing practices adopt a sliding-window-style cropping strategy to adapt to resolution increase. Such a cropping strategy, however, can easily cut off objects and connected regions, which introduces semantic discontinuity and therefore impedes MLLMs from recognizing small or irregularly shaped objects or text, leading to a phenomenon we call the semantic sawtooth effect. This effect is particularly evident in lightweight MLLMs. To address this issue, we introduce a Complementary Image Pyramid (CIP), a simple, effective, and plug-and-play solution designed to mitigate semantic discontinuity during high-resolution image processing. In particular, CIP dynamically constructs an image pyramid to provide complementary semantic information for the cropping-based MLLMs, enabling them to richly acquire semantics at all levels. Furthermore, we introduce a Scale Compression Mechanism (SCM) to reduce the additional computational overhead by compressing the redundant visual tokens. Our experiments demonstrate that CIP can consistently enhance the performance across diverse architectures (e.g., MiniCPM-V-2, InternVL2, and LLaVA-OneVision), various model capacity (1B$\rightarrow$8B), and different usage configurations (training-free and fine-tuning). Leveraging the proposed CIP and SCM, we introduce a lightweight MLLM, Mini-Monkey, which achieves remarkable performance in both general multimodal understanding and document understanding. On the OCRBench, the 2B-version Mini-Monkey even surpasses the 8B model InternVL2-8B by 12 score. Additionally, training Mini-Monkey is cheap, requiring only eight RTX 3090 GPUs. The code is available at this https URL.
Submission history
From: Mingxin Huang [view email][v1] Sun, 4 Aug 2024 13:55:58 UTC (6,186 KB)
[v2] Fri, 9 Aug 2024 04:01:11 UTC (6,188 KB)
[v3] Mon, 28 Oct 2024 07:40:49 UTC (4,192 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.