Computer Science > Machine Learning
[Submitted on 5 Aug 2024 (v1), last revised 5 Oct 2024 (this version, v2)]
Title:Wave-RVFL: A Randomized Neural Network Based on Wave Loss Function
View PDF HTML (experimental)Abstract:The random vector functional link (RVFL) network is well-regarded for its strong generalization capabilities in the field of machine learning. However, its inherent dependencies on the square loss function make it susceptible to noise and outliers. Furthermore, the calculation of RVFL's unknown parameters necessitates matrix inversion of the entire training sample, which constrains its scalability. To address these challenges, we propose the Wave-RVFL, an RVFL model incorporating the wave loss function. We formulate and solve the proposed optimization problem of the Wave-RVFL using the adaptive moment estimation (Adam) algorithm in a way that successfully eliminates the requirement for matrix inversion and significantly enhances scalability. The Wave-RVFL exhibits robustness against noise and outliers by preventing over-penalization of deviations, thereby maintaining a balanced approach to managing noise and outliers. The proposed Wave-RVFL model is evaluated on multiple UCI datasets, both with and without the addition of noise and outliers, across various domains and sizes. Empirical results affirm the superior performance and robustness of the Wave-RVFL compared to baseline models, establishing it as a highly effective and scalable classification solution. The source codes and the Supplementary Material are available at this https URL.
Submission history
From: M Tanveer PhD [view email][v1] Mon, 5 Aug 2024 20:46:54 UTC (489 KB)
[v2] Sat, 5 Oct 2024 18:00:17 UTC (480 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.