Computer Science > Data Structures and Algorithms
[Submitted on 3 Aug 2024]
Title:Differentially Private Gomory-Hu Trees
View PDF HTML (experimental)Abstract:Given an undirected, weighted $n$-vertex graph $G = (V, E, w)$, a Gomory-Hu tree $T$ is a weighted tree on $V$ such that for any pair of distinct vertices $s, t \in V$, the Min-$s$-$t$-Cut on $T$ is also a Min-$s$-$t$-Cut on $G$. Computing a Gomory-Hu tree is a well-studied problem in graph algorithms and has received considerable attention. In particular, a long line of work recently culminated in constructing a Gomory-Hu tree in almost linear time [Abboud, Li, Panigrahi and Saranurak, FOCS 2023].
We design a differentially private (DP) algorithm that computes an approximate Gomory-Hu tree. Our algorithm is $\varepsilon$-DP, runs in polynomial time, and can be used to compute $s$-$t$ cuts that are $\tilde{O}(n/\varepsilon)$-additive approximations of the Min-$s$-$t$-Cuts in $G$ for all distinct $s, t \in V$ with high probability. Our error bound is essentially optimal, as [Dalirrooyfard, Mitrović and Nevmyvaka, NeurIPS 2023] showed that privately outputting a single Min-$s$-$t$-Cut requires $\Omega(n)$ additive error even with $(1, 0.1)$-DP and allowing for a multiplicative error term. Prior to our work, the best additive error bounds for approximate all-pairs Min-$s$-$t$-Cuts were $O(n^{3/2}/\varepsilon)$ for $\varepsilon$-DP [Gupta, Roth and Ullman, TCC 2012] and $O(\sqrt{mn} \cdot \text{polylog}(n/\delta) / \varepsilon)$ for $(\varepsilon, \delta)$-DP [Liu, Upadhyay and Zou, SODA 2024], both of which are implied by differential private algorithms that preserve all cuts in the graph. An important technical ingredient of our main result is an $\varepsilon$-DP algorithm for computing minimum Isolating Cuts with $\tilde{O}(n / \varepsilon)$ additive error, which may be of independent interest.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.