Quantum Physics
[Submitted on 1 Aug 2024]
Title:Scaling and assigning resources on ion trap QCCD architectures
View PDF HTML (experimental)Abstract:Ion trap technologies have earned significant attention as potential candidates for quantum information processing due to their long decoherence times and precise manipulation of individual qubits, distinguishing them from other candidates in the field of quantum technologies. However, scalability remains a challenge, as introducing additional qubits into a trap increases noise and heating effects, consequently decreasing operational fidelity. Trapped-ion Quantum Charge-Coupled Device (QCCD) architectures have addressed this limitation by interconnecting multiple traps and employing ion shuttling mechanisms to transfer ions among traps. This new architectural design requires the development of novel compilation techniques for quantum algorithms, which efficiently allocate and route qubits, and schedule operations. The aim of a compiler is to minimize ion movements and, therefore, reduce the execution time of the circuit to achieve a higher fidelity.
In this paper, we propose a novel approach for initial qubit placement, demonstrating enhancements of up to 50\% compared to prior methods. Furthermore, we conduct a scalability analysis on two distinct QCCD topologies: a 1D-linear array and a ring structure. Additionally, we evaluate the impact of the excess capacity -- i.e. the number of free spaces within a trap -- on the algorithm performance.
Current browse context:
quant-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.