Condensed Matter > Disordered Systems and Neural Networks
[Submitted on 30 Jul 2024 (v1), last revised 16 Sep 2024 (this version, v2)]
Title:Exploring Loss Landscapes through the Lens of Spin Glass Theory
View PDF HTML (experimental)Abstract:In the past decade, significant strides in deep learning have led to numerous groundbreaking applications. Despite these advancements, the understanding of the high generalizability of deep learning, especially in such an over-parametrized space, remains limited. For instance, in deep neural networks (DNNs), their internal representations, decision-making mechanism, absence of overfitting in an over-parametrized space, superior generalizability, etc., remain less understood. Successful applications are often considered as empirical rather than scientific achievement. This paper delves into the loss landscape of DNNs through the lens of spin glass in statistical physics, a system characterized by a complex energy landscape with numerous metastable states, as a novel perspective in understanding how DNNs work. We investigated the loss landscape of single hidden layer neural networks activated by Rectified Linear Unit (ReLU) function, and introduced several protocols to examine the analogy between DNNs and spin glass. Specifically, we used (1) random walk in the parameter space of DNNs to unravel the structures in their loss landscape; (2) a permutation-interpolation protocol to study the connection between copies of identical regions in the loss landscape due to the permutation symmetry in the hidden layers; (3) hierarchical clustering to reveal the hierarchy among trained solutions of DNNs, reminiscent of the so-called Replica Symmetry Breaking (RSB) phenomenon (i.e. the Parisi solution) in spin glass; (4) finally, we examine the relationship between the ruggedness of DNN's loss landscape and its generalizability, showing an improvement of flattened minima.
Submission history
From: Hao Liao [view email][v1] Tue, 30 Jul 2024 10:37:15 UTC (4,706 KB)
[v2] Mon, 16 Sep 2024 12:39:33 UTC (4,830 KB)
Current browse context:
cond-mat.dis-nn
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.