Computer Science > Neural and Evolutionary Computing
[Submitted on 28 Jul 2024]
Title:Competition-based Adaptive ReLU for Deep Neural Networks
View PDF HTML (experimental)Abstract:Activation functions introduce nonlinearity into deep neural networks. Most popular activation functions allow positive values to pass through while blocking or suppressing negative values. From the idea that positive values and negative values are equally important, and they must compete for activation, we proposed a new Competition-based Adaptive ReLU (CAReLU). CAReLU scales the input values based on the competition results between positive values and negative values. It defines two parameters to adjust the scaling strategy and can be trained uniformly with other network parameters. We verify the effectiveness of CAReLU on image classification, super-resolution, and natural language processing tasks. In the experiment, our method performs better than other widely used activation functions. In the case of replacing ReLU in ResNet-18 with our proposed activation function, it improves the classification accuracy on the CIFAR-100 dataset. The effectiveness and the new perspective on the utilization of competition results between positive values and negative values make CAReLU a promising activation function.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.