Quantum Physics
[Submitted on 25 Jul 2024]
Title:Explicit block encodings of boundary value problems for many-body elliptic operators
View PDFAbstract:Simulation of physical systems is one of the most promising use cases of future digital quantum computers. In this work we systematically analyze the quantum circuit complexities of block encoding the discretized elliptic operators that arise extensively in numerical simulations for partial differential equations, including high-dimensional instances for many-body simulations. When restricted to rectangular domains with separable boundary conditions, we provide explicit circuits to block encode the many-body Laplacian with separable periodic, Dirichlet, Neumann, and Robin boundary conditions, using standard discretization techniques from low-order finite difference methods. To obtain high-precision, we introduce a scheme based on periodic extensions to solve Dirichlet and Neumann boundary value problems using a high-order finite difference method, with only a constant increase in total circuit depth and subnormalization factor. We then present a scheme to implement block encodings of differential operators acting on more arbitrary domains, inspired by Cartesian immersed boundary methods. We then block encode the many-body convective operator, which describes interacting particles experiencing a force generated by a pair-wise potential given as an inverse power law of the interparticle distance. This work provides concrete recipes that are readily translated into quantum circuits, with depth logarithmic in the total Hilbert space dimension, that block encode operators arising broadly in applications involving the quantum simulation of quantum and classical many-body mechanics.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.