Mathematics > Analysis of PDEs
[Submitted on 26 Jul 2024]
Title:On reduced inertial PDE models for Cucker-Smale flocking dynamics
View PDF HTML (experimental)Abstract:In particle systems, flocking refers to the phenomenon where particles' individual velocities eventually align. The Cucker-Smale model is a well-known mathematical framework that describes this behavior. Many continuous descriptions of the Cucker-Smale model use PDEs with both particle position and velocity as independent variables, thus providing a full description of the particles mean-field limit (MFL) dynamics. In this paper, we introduce a novel reduced inertial PDE model consisting of two equations that depend solely on particle position. In contrast to other reduced models, ours is not derived from the MFL, but directly includes the model reduction at the level of the empirical densities, thus allowing for a straightforward connection to the underlying particle dynamics. We present a thorough analytical investigation of our reduced model, showing that: firstly, our reduced PDE satisfies a natural and interpretable continuous definition of flocking; secondly, in specific cases, we can fully quantify the discrepancy between PDE solution and particle system. Our theoretical results are supported by numerical simulations.
Submission history
From: Federico Cornalba [view email][v1] Fri, 26 Jul 2024 13:06:26 UTC (1,396 KB)
Current browse context:
math.AP
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.