Computer Science > Computation and Language
[Submitted on 24 Jul 2024]
Title:Improving ICD coding using Chapter based Named Entities and Attentional Models
View PDFAbstract:Recent advancements in natural language processing (NLP) have led to automation in various domains. However, clinical NLP often relies on benchmark datasets that may not reflect real-world scenarios accurately. Automatic ICD coding, a vital NLP task, typically uses outdated and imbalanced datasets like MIMIC-III, with existing methods yielding micro-averaged F1 scores between 0.4 and 0.7 due to many false positives. Our research introduces an enhanced approach to ICD coding that improves F1 scores by using chapter-based named entities and attentional models. This method categorizes discharge summaries into ICD-9 Chapters and develops attentional models with chapter-specific data, eliminating the need to consider external data for code identification. For categorization, we use Chapter-IV to de-bias and influence key entities and weights without neural networks, creating accurate thresholds and providing interpretability for human validation. Post-validation, we develop attentional models for three frequent and three non-frequent codes from Chapter-IV using Bidirectional-Gated Recurrent Units (GRUs) with Attention and Transformer with Multi-head Attention architectures. The average Micro-F1 scores of 0.79 and 0.81 from these models demonstrate significant performance improvements in ICD coding.
Submission history
From: Abhijith Beeravolu Reddy [view email][v1] Wed, 24 Jul 2024 12:34:23 UTC (1,349 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.