Computer Science > Neural and Evolutionary Computing
[Submitted on 25 Jul 2024]
Title:Overcoming Binary Adversarial Optimisation with Competitive Coevolution
View PDF HTML (experimental)Abstract:Co-evolutionary algorithms (CoEAs), which pair candidate designs with test cases, are frequently used in adversarial optimisation, particularly for binary test-based problems where designs and tests yield binary outcomes. The effectiveness of designs is determined by their performance against tests, and the value of tests is based on their ability to identify failing designs, often leading to more sophisticated tests and improved designs. However, CoEAs can exhibit complex, sometimes pathological behaviours like disengagement. Through runtime analysis, we aim to rigorously analyse whether CoEAs can efficiently solve test-based adversarial optimisation problems in an expected polynomial runtime.
This paper carries out the first rigorous runtime analysis of $(1,\lambda)$ CoEA for binary test-based adversarial optimisation problems. In particular, we introduce a binary test-based benchmark problem called \Diagonal problem and initiate the first runtime analysis of competitive CoEA on this problem. The mathematical analysis shows that the $(1,\lambda)$-CoEA can efficiently find an $\varepsilon$ approximation to the optimal solution of the \Diagonal problem, i.e. in expected polynomial runtime assuming sufficiently low mutation rates and large offspring population size. On the other hand, the standard $(1,\lambda)$-EA fails to find an $\varepsilon$ approximation to the optimal solution of the \Diagonal problem in polynomial runtime. This suggests the promising potential of coevolution for solving binary adversarial optimisation problems.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.