Computer Science > Computer Vision and Pattern Recognition
[Submitted on 25 Jul 2024]
Title:Towards the Spectral bias Alleviation by Normalizations in Coordinate Networks
View PDF HTML (experimental)Abstract:Representing signals using coordinate networks dominates the area of inverse problems recently, and is widely applied in various scientific computing tasks. Still, there exists an issue of spectral bias in coordinate networks, limiting the capacity to learn high-frequency components. This problem is caused by the pathological distribution of the neural tangent kernel's (NTK's) eigenvalues of coordinate networks. We find that, this pathological distribution could be improved using classical normalization techniques (batch normalization and layer normalization), which are commonly used in convolutional neural networks but rarely used in coordinate networks. We prove that normalization techniques greatly reduces the maximum and variance of NTK's eigenvalues while slightly modifies the mean value, considering the max eigenvalue is much larger than the most, this variance change results in a shift of eigenvalues' distribution from a lower one to a higher one, therefore the spectral bias could be alleviated. Furthermore, we propose two new normalization techniques by combining these two techniques in different ways. The efficacy of these normalization techniques is substantiated by the significant improvements and new state-of-the-arts achieved by applying normalization-based coordinate networks to various tasks, including the image compression, computed tomography reconstruction, shape representation, magnetic resonance imaging, novel view synthesis and multi-view stereo reconstruction.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.