Astrophysics > Earth and Planetary Astrophysics
[Submitted on 24 Jul 2024]
Title:Ephemeris Reconstruction for Comet 67P/Churyumov-Gerasimenko During Rosetta Proximity Phase from Radiometric Data Analysis
View PDFAbstract:This study provides a continuous ephemeris reconstruction for comet 67P/Churyumov-Gerasimenko by reanalyzing Rosetta radiometric measurements and Earth-based astrometry. Given the comet-to-spacecraft relative trajectory provided by the navigation team, these measurements were used to estimate the comet state and some critical physical parameters, most notably the non-gravitational accelerations induced by the outgassing of surface volatiles, for which different models were tested and compared. The reference reconstructed ephemeris, which uses a stochastic acceleration model, has position uncertainties below 10 km, 30 km, and 80 km in the orbital radial, tangential, and normal directions for the whole duration of the Rosetta proximity phase (from July 2014 to October 2016). Furthermore, the solution can fit ground-based astrometry between March 2010 and July 2018, covering a complete heliocentric orbit of 67P. The estimated comet non-gravitational accelerations are dominated by the orbital radial and normal components, reaching peak values of $(1.28 \pm 0.17) \times 10^{-8} \, \text{m/s}^2$ and $(0.52 \pm 0.20) \times 10^{-8} \, \text{m/s}^2$, respectively 15 days and 24 days after perihelion. Furthermore, the acceleration magnitude is shown to have a steep dependence on the comet heliocentric distance $\text{NGA} \sim r_\odot^{-6}$ and shows asymmetries in the pre- and post-perihelion activities. The estimated acceleration components, agnostic due to the limited physical assumptions, could be used as a constraint for future investigations involving high-fidelity thermophysical models of the comet surface.
Submission history
From: Riccardo Lasagni Manghi PhD [view email][v1] Wed, 24 Jul 2024 20:04:33 UTC (1,412 KB)
Current browse context:
astro-ph.EP
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.