Computer Science > Computers and Society
[Submitted on 27 Jun 2024]
Title:"My Kind of Woman": Analysing Gender Stereotypes in AI through The Averageness Theory and EU Law
View PDF HTML (experimental)Abstract:This study delves into gender classification systems, shedding light on the interaction between social stereotypes and algorithmic determinations. Drawing on the "averageness theory," which suggests a relationship between a face's attractiveness and the human ability to ascertain its gender, we explore the potential propagation of human bias into artificial intelligence (AI) systems. Utilising the AI model Stable Diffusion 2.1, we have created a dataset containing various connotations of attractiveness to test whether the correlation between attractiveness and accuracy in gender classification observed in human cognition persists within AI. Our findings indicate that akin to human dynamics, AI systems exhibit variations in gender classification accuracy based on attractiveness, mirroring social prejudices and stereotypes in their algorithmic decisions. This discovery underscores the critical need to consider the impacts of human perceptions on data collection and highlights the necessity for a multidisciplinary and intersectional approach to AI development and AI data training. By incorporating cognitive psychology and feminist legal theory, we examine how data used for AI training can foster gender diversity and fairness under the scope of the AI Act and GDPR, reaffirming how psychological and feminist legal theories can offer valuable insights for ensuring the protection of gender equality and non-discrimination in AI systems.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.