Computer Science > Machine Learning
[Submitted on 17 Jul 2024 (v1), last revised 17 Aug 2024 (this version, v2)]
Title:SmartQuant: CXL-based AI Model Store in Support of Runtime Configurable Weight Quantization
View PDF HTML (experimental)Abstract:Recent studies have revealed that, during the inference on generative AI models such as transformer, the importance of different weights exhibits substantial context-dependent variations. This naturally manifests a promising potential of adaptively configuring weight quantization to improve the generative AI inference efficiency. Although configurable weight quantization can readily leverage the hardware support of variable-precision arithmetics in modern GPU and AI accelerators, little prior research has studied how one could exploit variable weight quantization to proportionally improve the AI model memory access speed and energy efficiency. Motivated by the rapidly maturing CXL ecosystem, this work develops a CXL-based design solution to fill this gap. The key is to allow CXL memory controllers play an active role in supporting and exploiting runtime configurable weight quantization. Using transformer as a representative generative AI model, we carried out experiments that well demonstrate the effectiveness of the proposed design solution.
Submission history
From: Rui Xie [view email][v1] Wed, 17 Jul 2024 20:39:49 UTC (766 KB)
[v2] Sat, 17 Aug 2024 19:44:41 UTC (766 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.