Computer Science > Machine Learning
[Submitted on 20 Jul 2024]
Title:Teach Harder, Learn Poorer: Rethinking Hard Sample Distillation for GNN-to-MLP Knowledge Distillation
View PDF HTML (experimental)Abstract:To bridge the gaps between powerful Graph Neural Networks (GNNs) and lightweight Multi-Layer Perceptron (MLPs), GNN-to-MLP Knowledge Distillation (KD) proposes to distill knowledge from a well-trained teacher GNN into a student MLP. In this paper, we revisit the knowledge samples (nodes) in teacher GNNs from the perspective of hardness, and identify that hard sample distillation may be a major performance bottleneck of existing graph KD algorithms. The GNN-to-MLP KD involves two different types of hardness, one student-free knowledge hardness describing the inherent complexity of GNN knowledge, and the other student-dependent distillation hardness describing the difficulty of teacher-to-student distillation. However, most of the existing work focuses on only one of these aspects or regards them as one thing. This paper proposes a simple yet effective Hardness-aware GNN-to-MLP Distillation (HGMD) framework, which decouples the two hardnesses and estimates them using a non-parametric approach. Finally, two hardness-aware distillation schemes (i.e., HGMD-weight and HGMD-mixup) are further proposed to distill hardness-aware knowledge from teacher GNNs into the corresponding nodes of student MLPs. As non-parametric distillation, HGMD does not involve any additional learnable parameters beyond the student MLPs, but it still outperforms most of the state-of-the-art competitors. HGMD-mixup improves over the vanilla MLPs by 12.95% and outperforms its teacher GNNs by 2.48% averaged over seven real-world datasets.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.