Computer Science > Computer Vision and Pattern Recognition
[Submitted on 24 Jun 2024]
Title:Bosch Street Dataset: A Multi-Modal Dataset with Imaging Radar for Automated Driving
View PDF HTML (experimental)Abstract:This paper introduces the Bosch street dataset (BSD), a novel multi-modal large-scale dataset aimed at promoting highly automated driving (HAD) and advanced driver-assistance systems (ADAS) research. Unlike existing datasets, BSD offers a unique integration of high-resolution imaging radar, lidar, and camera sensors, providing unprecedented 360-degree coverage to bridge the current gap in high-resolution radar data availability. Spanning urban, rural, and highway environments, BSD enables detailed exploration into radar-based object detection and sensor fusion techniques. The dataset is aimed at facilitating academic and research collaborations between Bosch and current and future partners. This aims to foster joint efforts in developing cutting-edge HAD and ADAS technologies. The paper describes the dataset's key attributes, including its scalability, radar resolution, and labeling methodology. Key offerings also include initial benchmarks for sensor modalities and a development kit tailored for extensive data analysis and performance evaluation, underscoring our commitment to contributing valuable resources to the HAD and ADAS research community.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.