Electrical Engineering and Systems Science > Systems and Control
[Submitted on 16 Jul 2024]
Title:Adaptive Event-triggered Control with Sampled Transmitted Output and Controller Dynamics
View PDF HTML (experimental)Abstract:The event-triggered control with intermittent output can reduce the communication burden between the controller and plant side over the network. It has been exploited for adaptive output feedback control of uncertain nonlinear systems in the literature, however the controller must partially reside at the plant side where the computation capacity is required. In this paper, all controller components are moved to the controller side and their dynamics use sampled states rather than continuous one with the benefit of directly estimating next triggering instance of some conditions and avoiding constantly checking event condition at the controller side. However, these bring two major challenges. First, the virtual input designed in the dynamic filtering technique for the stabilization is no longer differentiable. Second, the plant output is sampled to transmit at plant side and sampled again at controller side to construct the controller, and the two asynchronous samplings make the analysis more involving. This paper solves these two issues by introducing a new state observer to simplify the adaptive law, a set of continuous companion variables for stability analysis and a new lemma quantifying the error bound between actual output signal and sampled transmitted output.
It is theoretically guaranteed that all internal signals in the closed-loop system are semiglobally bounded and the output is practically stabilized to the origin. Finally, the numerical simulation illustrates the effectiveness of proposed scheme.
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.