Mathematics > Numerical Analysis
[Submitted on 16 Jul 2024 (v1), last revised 18 Jul 2024 (this version, v2)]
Title:A parallel batch greedy algorithm in reduced basis methods: Convergence rates and numerical results
View PDFAbstract:The "classical" (weak) greedy algorithm is widely used within model order reduction in order to compute a reduced basis in the offline training phase: An a posteriori error estimator is maximized and the snapshot corresponding to the maximizer is added to the basis. Since these snapshots are determined by a sufficiently detailed discretization, the offline phase is often computationally extremely costly. We suggest to replace the serial determination of one snapshot after the other by a parallel approach. In order to do so, we introduce a batch size $b$ and add $b$ snapshots to the current basis in every greedy iteration. These snapshots are computed in parallel. We prove convergence rates for this new batch greedy algorithm and compare them to those of the classical (weak) greedy algorithm in the Hilbert and Banach space case. Then, we present numerical results where we apply a (parallel) implementation of the proposed algorithm to the linear elliptic thermal block problem. We analyze the convergence rate as well as the offline and online wall-clock times for different batch sizes. We show that the proposed variant can significantly speed-up the offline phase while the size of the reduced problem is only moderately increased. The benefit of the parallel batch greedy increases for more complicated problems.
Submission history
From: Niklas Reich [view email][v1] Tue, 16 Jul 2024 11:50:04 UTC (87 KB)
[v2] Thu, 18 Jul 2024 11:28:24 UTC (87 KB)
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.