Computer Science > Computational Engineering, Finance, and Science
[Submitted on 11 Jul 2024]
Title:Bayesian uncertainty analysis for underwater 3D reconstruction with neural radiance fields
View PDF HTML (experimental)Abstract:Neural radiance fields (NeRFs) are a deep learning technique that can generate novel views of 3D scenes using sparse 2D images from different viewing directions and camera poses. As an extension of conventional NeRFs in underwater environment, where light can get absorbed and scattered by water, SeaThru-NeRF was proposed to separate the clean appearance and geometric structure of underwater scene from the effects of the scattering medium. Since the quality of the appearance and structure of underwater scenes is crucial for downstream tasks such as underwater infrastructure inspection, the reliability of the 3D reconstruction model should be considered and evaluated. Nonetheless, owing to the lack of ability to quantify uncertainty in 3D reconstruction of underwater scenes under natural ambient illumination, the practical deployment of NeRFs in unmanned autonomous underwater navigation is limited. To address this issue, we introduce a spatial perturbation field D_omega based on Bayes' rays in SeaThru-NeRF and perform Laplace approximation to obtain a Gaussian distribution N(0,Sigma) of the parameters omega, where the diagonal elements of Sigma correspond to the uncertainty at each spatial location. We also employ a simple thresholding method to remove artifacts from the rendered results of underwater scenes. Numerical experiments are provided to demonstrate the effectiveness of this approach.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.