Computer Science > Computer Vision and Pattern Recognition
[Submitted on 10 Jul 2024 (v1), last revised 22 Jul 2024 (this version, v2)]
Title:OV-DINO: Unified Open-Vocabulary Detection with Language-Aware Selective Fusion
View PDF HTML (experimental)Abstract:Open-vocabulary detection is a challenging task due to the requirement of detecting objects based on class names, including those not encountered during training. Existing methods have shown strong zero-shot detection capabilities through pre-training and pseudo-labeling on diverse large-scale datasets. However, these approaches encounter two main challenges: (i) how to effectively eliminate data noise from pseudo-labeling, and (ii) how to efficiently leverage the language-aware capability for region-level cross-modality fusion and alignment. To address these challenges, we propose a novel unified open-vocabulary detection method called OV-DINO, which is pre-trained on diverse large-scale datasets with language-aware selective fusion in a unified framework. Specifically, we introduce a Unified Data Integration (UniDI) pipeline to enable end-to-end training and eliminate noise from pseudo-label generation by unifying different data sources into detection-centric data format. In addition, we propose a Language-Aware Selective Fusion (LASF) module to enhance the cross-modality alignment through a language-aware query selection and fusion process. We evaluate the performance of the proposed OV-DINO on popular open-vocabulary detection benchmarks, achieving state-of-the-art results with an AP of 50.6% on the COCO benchmark and 40.1% on the LVIS benchmark in a zero-shot manner, demonstrating its strong generalization ability. Furthermore, the fine-tuned OV-DINO on COCO achieves 58.4% AP, outperforming many existing methods with the same backbone. The code for OV-DINO is available at this https URL.
Submission history
From: Hao Wang [view email][v1] Wed, 10 Jul 2024 17:05:49 UTC (4,674 KB)
[v2] Mon, 22 Jul 2024 03:26:21 UTC (4,708 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.