Computer Science > Computer Science and Game Theory
[Submitted on 8 Jul 2024]
Title:The k-Facility Location Problem Via Optimal Transport: A Bayesian Study of the Percentile Mechanisms
View PDF HTML (experimental)Abstract:In this paper, we investigate the $k$-Facility Location Problem ($k$-FLP) within the Bayesian Mechanism Design framework, in which agents' preferences are samples of a probability distributed on a line. Our primary contribution is characterising the asymptotic behavior of percentile mechanisms, which varies according to the distribution governing the agents' types. To achieve this, we connect the $k$-FLP and projection problems in the Wasserstein space. Owing to this relation, we show that the ratio between the expected cost of a percentile mechanism and the expected optimal cost is asymptotically bounded. Furthermore, we characterize the limit of this ratio and analyze its convergence speed. Our asymptotic study is complemented by deriving an upper bound on the Bayesian approximation ratio, applicable when the number of agents $n$ exceeds the number of facilities $k$. We also characterize the optimal percentile mechanism for a given agent's distribution through a system of $k$ equations. Finally, we estimate the optimality loss incurred when the optimal percentile mechanism is derived using an approximation of the agents' distribution rather than the actual distribution.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.