Computer Science > Cryptography and Security
[Submitted on 9 Jul 2024 (v1), last revised 14 Jul 2024 (this version, v2)]
Title:Event Trojan: Asynchronous Event-based Backdoor Attacks
View PDF HTML (experimental)Abstract:As asynchronous event data is more frequently engaged in various vision tasks, the risk of backdoor attacks becomes more evident. However, research into the potential risk associated with backdoor attacks in asynchronous event data has been scarce, leaving related tasks vulnerable to potential threats. This paper has uncovered the possibility of directly poisoning event data streams by proposing Event Trojan framework, including two kinds of triggers, i.e., immutable and mutable triggers. Specifically, our two types of event triggers are based on a sequence of simulated event spikes, which can be easily incorporated into any event stream to initiate backdoor attacks. Additionally, for the mutable trigger, we design an adaptive learning mechanism to maximize its aggressiveness. To improve the stealthiness, we introduce a novel loss function that constrains the generated contents of mutable triggers, minimizing the difference between triggers and original events while maintaining effectiveness. Extensive experiments on public event datasets show the effectiveness of the proposed backdoor triggers. We hope that this paper can draw greater attention to the potential threats posed by backdoor attacks on event-based tasks. Our code is available at this https URL.
Submission history
From: Ruofei Wang [view email][v1] Tue, 9 Jul 2024 13:15:39 UTC (26,670 KB)
[v2] Sun, 14 Jul 2024 10:40:13 UTC (26,466 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.