Computer Science > Sound
[Submitted on 5 Jul 2024 (v1), last revised 5 Sep 2024 (this version, v2)]
Title:PAGURI: a user experience study of creative interaction with text-to-music models
View PDF HTML (experimental)Abstract:In recent years, text-to-music models have been the biggest breakthrough in automatic music generation. While they are unquestionably a showcase of technological progress, it is not clear yet how they can be realistically integrated into the artistic practice of musicians and music practitioners. This paper aims to address this question via Prompt Audio Generation User Research Investigation (PAGURI), a user experience study where we leverage recent text-to-music developments to study how musicians and practitioners interact with these systems, evaluating their satisfaction levels. We developed an online tool through which users can generate music samples and/or apply recently proposed personalization techniques, based on fine-tuning, to allow the text-to-music model to generate sounds closer to their needs and preferences. Using questionnaires, we analyzed how participants interacted with the proposed tool, to understand the effectiveness of text-to-music models in enhancing users' creativity. Results show that even if the audio samples generated and their quality may not always meet user expectations, the majority of the participants would incorporate the tool in their creative process. Furthermore, they provided insights into potential enhancements for the system and its integration into their music practice.
Submission history
From: Luca Comanducci [view email][v1] Fri, 5 Jul 2024 08:15:55 UTC (26 KB)
[v2] Thu, 5 Sep 2024 13:13:32 UTC (1,236 KB)
Current browse context:
cs.SD
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.