Computer Science > Computer Vision and Pattern Recognition
[Submitted on 4 Jul 2024]
Title:Solutions to Deepfakes: Can Camera Hardware, Cryptography, and Deep Learning Verify Real Images?
View PDF HTML (experimental)Abstract:The exponential progress in generative AI poses serious implications for the credibility of all real images and videos. There will exist a point in the future where 1) digital content produced by generative AI will be indistinguishable from those created by cameras, 2) high-quality generative algorithms will be accessible to anyone, and 3) the ratio of all synthetic to real images will be large. It is imperative to establish methods that can separate real data from synthetic data with high confidence. We define real images as those that were produced by the camera hardware, capturing a real-world scene. Any synthetic generation of an image or alteration of a real image through generative AI or computer graphics techniques is labeled as a synthetic image. To this end, this document aims to: present known strategies in detection and cryptography that can be employed to verify which images are real, weight the strengths and weaknesses of these strategies, and suggest additional improvements to alleviate shortcomings.
Submission history
From: Alexander Vilesov [view email][v1] Thu, 4 Jul 2024 22:01:21 UTC (16,968 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.