Computer Science > Computational Engineering, Finance, and Science
[Submitted on 4 Jul 2024 (v1), last revised 21 Oct 2024 (this version, v2)]
Title:Towards reproducible machine learning-based process monitoring and quality prediction research for additive manufacturing
View PDFAbstract:Machine learning (ML)-based cyber-physical systems (CPSs) have been extensively developed to improve the print quality of additive manufacturing (AM). However, the reproducibility of these systems, as presented in published research, has not been thoroughly investigated due to a lack of formal evaluation methods. Reproducibility, a critical component of trustworthy artificial intelligence, is achieved when an independent team can replicate the findings or artifacts of a study using a different experimental setup and achieve comparable performance. In many publications, critical information necessary for reproduction is often missing, resulting in systems that fail to replicate the reported performance. This paper proposes a reproducibility investigation pipeline and a reproducibility checklist for ML-based process monitoring and quality prediction systems for AM. The pipeline guides researchers through the key steps required to reproduce a study, while the checklist systematically extracts reproducibility-relevant information from the publication. We validated the proposed approach through two case studies: reproducing a fused filament fabrication warping detection system and a laser powder bed fusion melt pool area prediction model. Both case studies confirmed that the pipeline and checklist successfully identified missing information, improved reproducibility, and enhanced the performance of reproduced systems. Based on the proposed checklist, a reproducibility survey was conducted to assess the current reproducibility status within this research domain. By addressing this research gap, the proposed methods aim to enhance trustworthiness and rigor in ML-based AM research, with potential applicability to other ML-based CPSs.
Submission history
From: Jiarui Xie Mr. [view email][v1] Thu, 4 Jul 2024 16:15:52 UTC (1,665 KB)
[v2] Mon, 21 Oct 2024 20:04:21 UTC (2,548 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.