Computer Science > Computer Vision and Pattern Recognition
[Submitted on 5 Jul 2024]
Title:Explainable Metric Learning for Deflating Data Bias
View PDF HTML (experimental)Abstract:Image classification is an essential part of computer vision which assigns a given input image to a specific category based on the similarity evaluation within given criteria. While promising classifiers can be obtained through deep learning models, these approaches lack explainability, where the classification results are hard to interpret in a human-understandable way. In this paper, we present an explainable metric learning framework, which constructs hierarchical levels of semantic segments of an image for better interpretability. The key methodology involves a bottom-up learning strategy, starting by training the local metric learning model for the individual segments and then combining segments to compose comprehensive metrics in a tree. Specifically, our approach enables a more human-understandable similarity measurement between two images based on the semantic segments within it, which can be utilized to generate new samples to reduce bias in a training dataset. Extensive experimental evaluation demonstrates that the proposed approach can drastically improve model accuracy compared with state-of-the-art methods.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.