Computer Science > Data Structures and Algorithms
[Submitted on 2 Jul 2024 (v1), last revised 27 Sep 2024 (this version, v2)]
Title:Optimizing Information Access in Networks via Edge Augmentation
View PDF HTML (experimental)Abstract:Given a graph $G = (V, E)$ and a model of information flow on that network, a fundamental question is to understand whether all nodes have sufficient access to information generated at other nodes in the graph. If not, we can ask if a small set of interventions in the form of edge additions improve information access. Formally, the broadcast value of a network is defined to be the minimum over pairs $u,v \in V$ of the probability that an information cascade starting at $u$ reaches $v$. Having a high broadcast value ensures that every node has sufficient access to information spreading in a network, thus quantifying fairness of access. In this paper, we formally study the Broadcast Improvement problem: given $G$ and a parameter $k$, the goal is to find the best set of $k$ edges to add to $G$ in order to maximize the broadcast value of the resulting graph.
We develop efficient approximation algorithms for this problem. If the optimal solution adds $k$ edges and achieves a broadcast of $\beta^*$, we develop algorithms that can (a) add $k$ edges and achieve a broadcast value roughly $(\beta^*)^4/16^k$, or (b) add $O(k\log n)$ edges and achieve a broadcast roughly $\beta^*$. We also provide other trade-offs that can be better depending on the parameter values. Our algorithms rely on novel probabilistic tools to reason about the existence of paths in edge-sampled graphs, and extend to a single-source variant of the problem, where we obtain analogous algorithmic results. We complement our results by proving that unless P = NP, any algorithm that adds $O(k)$ edges must lose significantly in the approximation of $\beta^*$, resolving an open question from prior work.
Submission history
From: Alex Crane [view email][v1] Tue, 2 Jul 2024 19:28:31 UTC (147 KB)
[v2] Fri, 27 Sep 2024 21:30:26 UTC (155 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.