Quantum Physics
[Submitted on 2 Jul 2024 (v1), last revised 19 Dec 2024 (this version, v3)]
Title:Quantum Curriculum Learning
View PDF HTML (experimental)Abstract:Quantum machine learning (QML) requires significant quantum resources to address practical real-world problems. When the underlying quantum information exhibits hierarchical structures in the data, limitations persist in training complexity and generalization. Research should prioritize both the efficient design of quantum architectures and the development of learning strategies to optimize resource usage. We propose a framework called quantum curriculum learning (Q-CurL) for quantum data, where the curriculum introduces simpler tasks or data to the learning model before progressing to more challenging ones. Q-CurL exhibits robustness to noise and data limitations, which is particularly relevant for current and near-term noisy intermediate-scale quantum devices. We achieve this through a curriculum design based on quantum data density ratios and a dynamic learning schedule that prioritizes the most informative quantum data. Empirical evidence shows that Q-CurL significantly enhances training convergence and generalization for unitary learning and improves the robustness of quantum phase recognition tasks. Q-CurL is effective with broad physical learning applications in condensed matter physics and quantum chemistry.
Submission history
From: Quoc Hoan Tran [view email][v1] Tue, 2 Jul 2024 16:44:14 UTC (510 KB)
[v2] Thu, 11 Jul 2024 05:42:23 UTC (509 KB)
[v3] Thu, 19 Dec 2024 07:07:51 UTC (739 KB)
Current browse context:
quant-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.