Computer Science > Machine Learning
[Submitted on 1 Jul 2024]
Title:SplitLoRA: A Split Parameter-Efficient Fine-Tuning Framework for Large Language Models
View PDF HTML (experimental)Abstract:The scalability of large language models (LLMs) in handling high-complexity models and large-scale datasets has led to tremendous successes in pivotal domains. While there is an urgent need to acquire more training data for LLMs, a concerning reality is the depletion of high-quality public datasets within a few years. In view of this, the federated learning (FL) LLM fine-tuning paradigm recently has been proposed to facilitate collaborative LLM fine-tuning on distributed private data, where multiple data owners collaboratively fine-tune a shared LLM without sharing raw data. However, the staggering model size of LLMs imposes heavy computing and communication burdens on clients, posing significant barriers to the democratization of the FL LLM fine-tuning paradigm. To address this issue, split learning (SL) has emerged as a promising solution by offloading the primary training workload to a server via model partitioning while exchanging activation/activation's gradients with smaller data sizes rather than the entire LLM. Unfortunately, research on the SL LLM fine-tuning paradigm is still in its nascent stage. To fill this gap, in this paper, we propose the first SL LLM fine-tuning framework, named SplitLoRA. SplitLoRA is built on the split federated learning (SFL) framework, amalgamating the advantages of parallel training from FL and model splitting from SL and thus greatly enhancing the training efficiency. It is worth noting that SplitLoRA is the inaugural open-source benchmark for SL LLM fine-tuning, providing a foundation for research efforts dedicated to advancing SL LLM fine-tuning. Extensive simulations validate that SplitLoRA achieves target accuracy in significantly less time than state-of-the-art LLM fine-tuning frameworks, demonstrating the superior training performance of SplitLoRA. The project page is available at this https URL.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.