Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 10 Apr 2024]
Title:A Robust Power Model Training Framework for Cloud Native Runtime Energy Metric Exporter
View PDFAbstract:Estimating power consumption in modern Cloud environments is essential for carbon quantification toward green computing. Specifically, it is important to properly account for the power consumed by each of the running applications, which are packaged as containers. This paper examines multiple challenges associated with this goal. The first challenge is that multiple customers are sharing the same hardware platform (multi-tenancy), where information on the physical servers is mostly obscured. The second challenge is the overhead in power consumption that the Cloud platform control plane induces. This paper addresses these challenges and introduces a novel pipeline framework for power model training. This allows versatile power consumption approximation of individual containers on the basis of available performance counters and other metrics. The proposed model utilizes machine learning techniques to predict the power consumed by the control plane and associated processes, and uses it for isolating the power consumed by the user containers, from the server power consumption. To determine how well the prediction results in an isolation, we introduce a metric termed isolation goodness. Applying the proposed power model does not require online power measurements, nor does it need information on the physical servers, configuration, or information on other tenants sharing the same machine. The results of cross-workload, cross-platform experiments demonstrated the higher accuracy of the proposed model when predicting power consumption of unseen containers on unknown platforms, including on virtual machines.
Submission history
From: Sunyanan Choochotkaew [view email][v1] Wed, 10 Apr 2024 02:20:29 UTC (3,353 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.