Mathematics > Numerical Analysis
[Submitted on 30 Jun 2024]
Title:A posteriori error estimator for elliptic interface problems in the fictitious formulation
View PDF HTML (experimental)Abstract:A posteriori error estimator is derived for an elliptic interface problem in the fictitious domain formulation with distributed Lagrange multiplier considering a discontinuous Lagrange multiplier finite element space. A posteriori error estimation plays a pivotal role in assessing the accuracy and reliability of computational solutions across various domains of science and engineering. This study delves into the theoretical underpinnings and computational considerations of a residual-based estimator.
Theoretically, the estimator is studied for cases with constant coefficients which jump across an interface as well as generalized scenarios with smooth coefficients that jump across an interface. Theoretical findings demonstrate the reliability and efficiency of the proposed estimators under all considered cases.
Numerical experiments are conducted to validate the theoretical results, incorporating various immersed geometries and instances of high coefficients jumps at the interface. Leveraging an adaptive algorithm, the estimator identifies regions with singularities and applies refinement accordingly. Results substantiate the theoretical findings, highlighting the reliability and efficiency of the estimators. Furthermore, numerical solutions exhibit optimal convergence properties, demonstrating resilience against geometric singularities or coefficients jumps.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.