Computer Science > Computation and Language
[Submitted on 29 Jun 2024]
Title:PFME: A Modular Approach for Fine-grained Hallucination Detection and Editing of Large Language Models
View PDF HTML (experimental)Abstract:Large Language Models (LLMs) excel in fluency but risk producing inaccurate content, called "hallucinations." This paper outlines a standardized process for categorizing fine-grained hallucination types and proposes an innovative framework--the Progressive Fine-grained Model Editor (PFME)--specifically designed to detect and correct fine-grained hallucinations in LLMs. PFME consists of two collaborative modules: the Real-time Fact Retrieval Module and the Fine-grained Hallucination Detection and Editing Module. The former identifies key entities in the document and retrieves the latest factual evidence from credible sources. The latter further segments the document into sentence-level text and, based on relevant evidence and previously edited context, identifies, locates, and edits each sentence's hallucination type. Experimental results on FavaBench and FActScore demonstrate that PFME outperforms existing methods in fine-grained hallucination detection tasks. Particularly, when using the Llama3-8B-Instruct model, PFME's performance in fine-grained hallucination detection with external knowledge assistance improves by 8.7 percentage points (pp) compared to ChatGPT. In editing tasks, PFME further enhances the FActScore of FActScore-Alpaca13B and FActScore-ChatGPT datasets, increasing by 16.2pp and 4.6pp, respectively.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.