Computer Science > Information Theory
[Submitted on 25 Jun 2024]
Title:Asymptotically Minimax Regret by Bayes Mixtures
View PDFAbstract:We study the problems of data compression, gambling and prediction of a sequence $x^n=x_1x_2...x_n$ from an alphabet ${\cal X}$, in terms of regret and expected regret (redundancy) with respect to various smooth families of probability distributions. We evaluate the regret of Bayes mixture distributions compared to maximum likelihood, under the condition that the maximum likelihood estimate is in the interior of the parameter space. For general exponential families (including the non-i.i.d.\ case) the asymptotically mimimax value is achieved when variants of the prior of Jeffreys are used. %under the condition that the maximum likelihood estimate is in the interior of the parameter space. Interestingly, we also obtain a modification of Jeffreys prior which has measure outside the given family of densities, to achieve minimax regret with respect to non-exponential type families. This modification enlarges the family using local exponential tilting (a fiber bundle). Our conditions are confirmed for certain non-exponential families, including curved families and mixture families (where either the mixture components or their weights of combination are parameterized) as well as contamination models. Furthermore for mixture families we show how to deal with the full simplex of parameters. These results also provide characterization of Rissanen's stochastic complexity.
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.