Computer Science > Sound
[Submitted on 24 Jun 2024]
Title:Exploring the Capability of Mamba in Speech Applications
View PDF HTML (experimental)Abstract:This paper explores the capability of Mamba, a recently proposed architecture based on state space models (SSMs), as a competitive alternative to Transformer-based models. In the speech domain, well-designed Transformer-based models, such as the Conformer and E-Branchformer, have become the de facto standards. Extensive evaluations have demonstrated the effectiveness of these Transformer-based models across a wide range of speech tasks. In contrast, the evaluation of SSMs has been limited to a few tasks, such as automatic speech recognition (ASR) and speech synthesis. In this paper, we compared Mamba with state-of-the-art Transformer variants for various speech applications, including ASR, text-to-speech, spoken language understanding, and speech summarization. Experimental evaluations revealed that Mamba achieves comparable or better performance than Transformer-based models, and demonstrated its efficiency in long-form speech processing.
Current browse context:
cs.SD
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.