Electrical Engineering and Systems Science > Image and Video Processing
[Submitted on 24 Jun 2024 (v1), last revised 5 Nov 2024 (this version, v3)]
Title:Sampling Strategies in Bayesian Inversion: A Study of RTO and Langevin Methods
View PDF HTML (experimental)Abstract:This paper studies two classes of sampling methods for the solution of inverse problems, namely Randomize-Then-Optimize (RTO), which is rooted in sensitivity analysis, and Langevin methods, which are rooted in the Bayesian framework. The two classes of methods correspond to different assumptions and yield samples from different target distributions. We highlight the main conceptual and theoretical differences between the two approaches and compare them from a practical point of view by tackling two classical inverse problems in imaging: deblurring and inpainting. We show that the choice of the sampling method has a significant impact on the quality of the reconstruction and that the RTO method is more robust to the choice of the parameters.
Submission history
From: Remi Laumont [view email][v1] Mon, 24 Jun 2024 14:08:27 UTC (10,134 KB)
[v2] Tue, 25 Jun 2024 09:36:21 UTC (10,134 KB)
[v3] Tue, 5 Nov 2024 11:53:56 UTC (11,458 KB)
Current browse context:
eess.IV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.