Mathematics > Dynamical Systems
[Submitted on 20 Jun 2024 (v1), last revised 25 Jun 2024 (this version, v2)]
Title:A macroscopic pedestrian model with variable maximal density
View PDF HTML (experimental)Abstract:In this paper we propose a novel macroscopic (fluid dynamics) model for describing pedestrian flow in low and high density regimes. The model is characterized by the fact that the maximal density reachable by the crowd - usually a fixed model parameter - is instead a state variable. To do that, the model couples a conservation law, devised as usual for tracking the evolution of the crowd density, with a Burgers-like PDE with a nonlocal term describing the evolution of the maximal density. The variable maximal density is used here to describe the effects of the psychological/physical pushing forces which are observed in crowds during competitive or emergency situations. Specific attention is also dedicated to the fundamental diagram, i.e., the function which expresses the relationship between crowd density and flux. Although the model needs a well defined fundamental diagram as known input parameter, it is not evident a priori which relationship between density and flux will be actually observed, due to the time-varying maximal density. An a posteriori analysis shows that the observed fundamental diagram has an elongated "tail" in the congested region, thus resulting similar to the concave/concave fundamental diagram with a "double hump" observed in real crowds. The main features of the model are investigated through 1D and 2D numerical simulations. The numerical code for the 1D simulation is freely available at this https URL
Submission history
From: Emiliano Cristiani [view email][v1] Thu, 20 Jun 2024 18:11:10 UTC (1,577 KB)
[v2] Tue, 25 Jun 2024 12:11:04 UTC (1,578 KB)
Current browse context:
math.DS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.