Statistics > Machine Learning
[Submitted on 19 Jun 2024 (v1), last revised 29 Aug 2024 (this version, v3)]
Title:Conditional score-based diffusion models for solving inverse problems in mechanics
View PDF HTML (experimental)Abstract:We propose a framework to perform Bayesian inference using conditional score-based diffusion models to solve a class of inverse problems in mechanics involving the inference of a specimen's spatially varying material properties from noisy measurements of its mechanical response to loading. Conditional score-based diffusion models are generative models that learn to approximate the score function of a conditional distribution using samples from the joint distribution. More specifically, the score functions corresponding to multiple realizations of the measurement are approximated using a single neural network, the so-called score network, which is subsequently used to sample the posterior distribution using an appropriate Markov chain Monte Carlo scheme based on Langevin dynamics. Training the score network only requires simulating the forward model. Hence, the proposed approach can accommodate black-box forward models and complex measurement noise. Moreover, once the score network has been trained, it can be re-used to solve the inverse problem for different realizations of the measurements. We demonstrate the efficacy of the proposed approach on a suite of high-dimensional inverse problems in mechanics that involve inferring heterogeneous material properties from noisy measurements. Some examples we consider involve synthetic data, while others include data collected from actual elastography experiments. Further, our applications demonstrate that the proposed approach can handle different measurement modalities, complex patterns in the inferred quantities, non-Gaussian and non-additive noise models, and nonlinear black-box forward models. The results show that the proposed framework can solve large-scale physics-based inverse problems efficiently.
Submission history
From: Agnimitra Dasgupta [view email][v1] Wed, 19 Jun 2024 02:09:15 UTC (8,423 KB)
[v2] Fri, 21 Jun 2024 19:01:31 UTC (8,423 KB)
[v3] Thu, 29 Aug 2024 17:47:18 UTC (4,056 KB)
Current browse context:
stat.ML
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.