Computer Science > Cryptography and Security
[Submitted on 19 Jun 2024]
Title:Privacy-Preserving ECG Data Analysis with Differential Privacy: A Literature Review and A Case Study
View PDF HTML (experimental)Abstract:Differential privacy has become the preeminent technique to protect the privacy of individuals in a database while allowing useful results from data analysis to be shared. Notably, it guarantees the amount of privacy loss in the worst-case scenario. Although many theoretical research papers have been published, practical real-life application of differential privacy demands estimating several important parameters without any clear solutions or guidelines. In the first part of the paper, we provide an overview of key concepts in differential privacy, followed by a literature review and discussion of its application to ECG analysis. In the second part of the paper, we explore how to implement differentially private query release on an arrhythmia database using a six-step process. We provide guidelines and discuss the related literature for all the steps involved, such as selection of the $\epsilon$ value, distribution of the total $\epsilon$ budget across the queries, and estimation of the sensitivity for the query functions. At the end, we discuss the shortcomings and challenges of applying differential privacy to ECG datasets.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.