Quantitative Biology > Neurons and Cognition
[Submitted on 12 Jun 2024]
Title:Entropy-statistical approach to phase-locking detection of pulse oscillations: application for the analysis of biosignal synchronization
View PDFAbstract:In this study a new method for analyzing synchronization in oscillator systems is proposed using the example of modeling the dynamics of a circuit of two resistively coupled pulse oscillators. The dynamic characteristic of synchronization is fuzzy entropy (FuzzyEn) calculated a time series composed of the ratios of the number of pulse periods (subharmonic ratio, SHR) during phase-locking intervals. Low entropy values indicate strong synchronization, whereas high entropy values suggest weak synchronization between the two oscillators. This method effectively visualizes synchronized modes of the circuit using entropy maps of synchronization states. Additionally, a classification of synchronization states is proposed based on the dependencies of FuzzyEn on the length of embedding vectors of SHR time series. An extension of this method for analyzing non-relaxation (non-spike) type signals is illustrated using the example of phase-phase coupling rhythms of local field potential of rat hippocampus. The entropy-statistical approach using rational fractions and pulse signal forms makes this method promising for analyzing biosignal synchronization and implementing the algorithm in mobile digital platforms.
Current browse context:
q-bio.NC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.