Computer Science > Computation and Language
[Submitted on 17 Jun 2024 (v1), last revised 4 Oct 2024 (this version, v2)]
Title:Improving Quotation Attribution with Fictional Character Embeddings
View PDF HTML (experimental)Abstract:Humans naturally attribute utterances of direct speech to their speaker in literary works. When attributing quotes, we process contextual information but also access mental representations of characters that we build and revise throughout the narrative. Recent methods to automatically attribute such utterances have explored simulating human logic with deterministic rules or learning new implicit rules with neural networks when processing contextual information. However, these systems inherently lack \textit{character} representations, which often leads to errors in more challenging examples of attribution: anaphoric and implicit quotes. In this work, we propose to augment a popular quotation attribution system, BookNLP, with character embeddings that encode global stylistic information of characters derived from an off-the-shelf stylometric model, Universal Authorship Representation (UAR). We create DramaCV (Code and data can be found at this https URL ), a corpus of English drama plays from the 15th to 20th century that we automatically annotate for Authorship Verification of fictional characters utterances, and release two versions of UAR trained on DramaCV, that are tailored for literary characters analysis. Then, through an extensive evaluation on 28 novels, we show that combining BookNLP's contextual information with our proposed global character embeddings improves the identification of speakers for anaphoric and implicit quotes, reaching state-of-the-art performance.
Submission history
From: Gaspard Michel [view email][v1] Mon, 17 Jun 2024 09:46:35 UTC (112 KB)
[v2] Fri, 4 Oct 2024 10:39:17 UTC (575 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.